Influence of Alkali Supplementation on Circulating microRNA Expression

L. Margolis¹, B. Dawson-Hughes², D.A. Rivas¹, Y. Ezzyat¹, R.A. Fielding¹, L. Ceglia^{2,3}

¹ Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer US Department of Agriculture, Human Nutrition Research Center on Aging at Tufts University, Boston, MA

² Bone Metabolism Laboratory, Jean Mayer US Department of Agriculture, Human Nutrition Research Center on Aging at Tufts University, Boston, MA

³ Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center, Boston, MA

No conflicts of interests.

INTRODUCTION

- There is growing evidence that supplementation with an alkaline salt, potassium bicarbonate (KHCO₃), in an amount that neutralizes the acid load of the diet, significantly reduces urinary excretion of N-telopeptide (NTX; marker of bone resorption), calcium (Ca), and nitrogen (N; marker of muscle breakdown) implicating beneficial bone and muscle effects in older men and women.
- Preliminary studies suggest that bone and muscle physiology might be reflected in changes in circulating microRNA levels small non-coding RNAs involved in regulation of gene expression which can be easily measured in the serum.
- These serum microRNAs could serve as newer biomarkers of bone and muscle function providing additional information on biological pathways affected by various interventions.

OBJECTIVES

- To examine whether 3-months of oral KHCO₃ supplementation (81 mmol/d) vs. placebo alters serum levels of microRNAs involved in various bone and muscle functions (**Table 1**).
- To investigate associations between changes in serum microRNA levels and changes in established indices of bone and muscle metabolism by treatment group.

METHODS

Study design

■ Three-month randomized, double-blind, placebo-controlled trial to determine optimal dose of KHCO₃ (81 vs. 120 mmol/d) vs. placebo to maximally suppress bone resorption as measured by urinary NTX .

Subject Selection

- Healthy ambulatory men and women age 60 years and older with an estimated glomerular filtration rate (GFR) of at least 50 mL·min⁻¹·1.73 m² (**Table 2**). Subjects encouraged to maintain diet and physical activity stable during the trial.
- The main trial enrolled 244 adults and 233 completed the 3-mo study.
- Based on the main study finding that KHCO₃ 81 mmol/d had more favorable effects than the 120 mmol/d dose on the main bone outcomes, we selected 24 subjects (n=12 in the KHCO₃ 81 mmol/d group; n=12 in the placebo group) for this secondary analysis.
- A priori criteria for selection were based on our main findings and included the following: a) baseline urinary net acid excretion (NAE) of 5 mmol or greater as an indicator of higher endogenous renal net acid status at baseline, b) equal numbers of men and women in the two groups.
- Protocol approved by the Tufts Medical Center-Tufts University Institutional Review Board, and written informed consent was obtained from each subject..

Study Pills

- KHCO₃ 81 mmol/d or matching placebo administered as 2 capsules (13.5 mmol/capsule) after each meal 3 times daily. A calcium and vitamin D supplement was supplied to all participants.
- Adherence measured by pill counts and NAE.

Anthropometric, Dietary, and Biochemical Measurements

- Baseline lean body mass measured by dual energy x-ray absorptiometry (DXA) at baseline.
- Urinary NAE, NTX, Ca, and N were measured at baseline and 3 months.
- GFR, serum P1NP (bone formation marker), and serum IGF-1 were measured at baseline and 3 months.
- Serum 25-hydroxyvitamin D level was measured at baseline.

microRNA (miR) Measurements

- RNA extracted from serum using a miRVanaTM PARISTM RNA Purification Kit (AM1556; Ambion Inc.).
- miR of interest (Table 1) analyzed using TaqMan® MicroRNA Assays (4427975; Applied Biosystems) following previously described multiplex reverse transcription (RT) and pre-amplification protocol.
- RT and pre-amplification conducted in a T100TM Thermal Cycler (Bio-Rad, Hercules, CA).
- RT-qPCR amplifications conducted using CFX96 TouchTM Real-Time PCR Detection System (Bio-Rad).
- All miRs normalized to U6. Fold changes calculated from baseline values using the $\Delta\Delta$ cycle threshold $(\Delta\Delta C_T)$ method.

RESULTS

- All characteristics (**Table 2**) and biochemical measurements (data not shown) did not differ significantly in the 2 groups at baseline.
- Three-month changes in urinary NAE differed by group as expected (KHCO $_3$ = -47±9 mmol; Placebo = -5±5 mmol; P<0.01).
- As seen in our larger cohort in the main study, $KHCO_3$ resulted in statistically significant declines in urinary NTX ($KHCO_3 = -158\pm31$ Nmol; Placebo = -47 ± 28 Nmol; P<0.01), urinary Ca ($KHCO_3 = -23\pm19$ mmol; Placebo = -38 ± 18 mmol; P<0.01), and serum PINP ($KHCO_3 = -8\pm3$ Nmol/L; Placebo = -2 ± 3 Nmol/L; P=0.03) compared to placebo over 3 months.
- ■As seen in our larger cohort in the main study, there were no statistically significant differences in urinary N and serum IGF-1 level in response to KHCO₃ vs. placebo (data not shown).
- KHCO₃ supplementation resulted in statistically significant differences in the fold change in serum miR-21 and miR-133b compared to placebo (**Table 3**; **Fig 1**).
- There were significant inverse associations between fold changes in miR-21 and miR-133b and 3-month changes in urinary NAE, NTX, and Ca (Fig 2).

TABLE 1. Circulating miRs and proposed function

TABLE 2. Baseline characteristics by group (Mean ±SEM)

	Placebo $(n = 12)$	$KHCO_3$ $(n = 12)$	<i>P</i> -value
Age (yrs)	67 ± 2	67 ± 1	0.87
Height (cm)	168.7 ± 2.8	170.9 ± 4.9	0.59
Weight (kg)	69.3 ± 3.1	75.8 ± 4.9	0.28
Body Mass Index (kg·m²)	24.3 ± 0.7	25.6 ± 1.1	0.33
Fat Mass (kg)	19.1 ± 2.1	21.9 ± 2.4	0.39
Fat-Free Mass (kg)	48.8 ± 3.1	50.2 ± 4.1	0.79
GFR (mL·min ¹ ·1.73 m ²)	73.1 ± 2.8	71.0 ± 2.2	0.57

TABLE 3. Fold change in miRs by treatment group (Mean ±SEM)

	Time	Placebo	KHCO3		P- Value	
				Time	Treatment	Time-by-Treatment
miR-1	Study Day 1	-1.00 ± 0.66	-0.91 ± 0.67	0.47	0.23	0.55
	Study Day 84	-1.03 ± 0.68	0.08 ± 1.07			
miR-21	Study Day 1	$\textbf{-}0.46 \pm 0.38$	-0.78 ± 0.34	0.23	0.05	0.07
	Study Day 84	-0.70 ± 0.45	0.74 ± 0.39			
miR-122	Study Day 1	-0.88 ± 0.61	-0.06 ± 0.62	0.44	0.43	0.75
	Study Day 84	-0.87 ± 0.54	-0.53 ± 0.46			
miR-125	Study Day 1	-0.49 ± 0.39	-0.39 ± 0.42	0.49	0.74	0.61
	Study Day 84	-0.67 ± 0.50	0.03 ± 0.56			
miR-133a	Study Day 1	$\textbf{-0.94} \pm 0.52$	-0.46 ± 0.35	0.14	0.23	0.67
	Study Day 84	-0.58 ± 0.43	0.27 ± 0.44			
miR-133b	Study Day 1	-0.65 ± 0.43	-1.23 ± 0.45	0.09	< 0.01	0.02
	Study Day 84	-1.23 ± 0.69	2.26 ± 0.85			
miR-206	Study Day 1	-0.71 ± 0.53	-0.28 ± 0.74	0.95	0.62	0.64
	Study Day 84	-0.57 ±0.51	-1.00 ± 0.65			
miR-422	Study Day 1	-0.63 ± 0.44	-1.52 ± 0.85	0.37	0.92	0.74
	Study Day 84	-0.91 ± 0.45	-1.33 ± 0.58			
miR-486	Study Day 1	-0.90 ± 0.51	-1.24 ± 0.34	0.56	0.19	0.25
	Study Day 84	-1.11 ± 0.49	-0.08 ± 0.55			

RESULTS continued

Values mean \pm SEM. Data log transformed for normality Statistical Analysis: Mixed Model Repeated Measures ANOVA with Bonferroni adjustment to determine pairwise comparisons +Treatment Effect; P = 0.05

†Time-by-Treatment; P = 0.07*Time-by-Treatment; P = 0.02

Fig 2. Associations between fold changes in miR-21 and miR-133b and 3-mo changes in UNAE, UNTX, and UCa

Values mean \pm SEM. Data log transformed for normality Statistical Analysis: Spearman rho's correlation coefficient

SUMMARY and CONCLUSIONS

- Reducing renal acid load by way of KHCO₃ supplementation at 81 mmol/d significantly increased expression of circulating miR-21 and miR-133b miRs involved in osteogenesis (miR-21), osteoblast differentiation (miR-133b) and myogenesis (miR-133b).
- ■Furthermore, there were strong associations between increases in both miR-21 and 133b and decreases in bone resorption (NTX) and calcium excretion. Given that circulating miRs 21 and 133b have been positively associated with bone mineral density by DXA and/or inversely associated with osteoporotic fractures, the direction of change in these miRs in our study is consistent with potential beneficial effects on bone health.
- Although circulating miR-133b has a role in skeletal muscle, it was not associated with nitrogen excretion in this subgroup on self-selected diets.
- ■The broader significance and role of these circulating miRNAs as biomarkers of bone and muscle health are still under investigation and larger studies are needed to verify these preliminary results.